Group 4
مرحبا بك في منتدى قروب 4 نحن سعيدون بتواجدك معنا سوف تجد لدينا كل المحاضرات والبرامج والفيديوهات نرجوا ان تتفضل بالتسجيل معنا لتنال كافة الصلاحيات في المنتدى
welcom to group 4 we happy to see you here plzz join to us Smile
Group 4
مرحبا بك في منتدى قروب 4 نحن سعيدون بتواجدك معنا سوف تجد لدينا كل المحاضرات والبرامج والفيديوهات نرجوا ان تتفضل بالتسجيل معنا لتنال كافة الصلاحيات في المنتدى
welcom to group 4 we happy to see you here plzz join to us Smile
Group 4
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

Group 4

المحاضرات بالاسفل .... اذا اردت اي محاضرة او اي طلب اكتبه في غرفة الطلبات وسيتم الاستجابه في اقرب وقت وشكرا ....
الرئيسيةأحدث الصورالتسجيلدخول

نتائج البحث
Rechercher بحث متقدم
سحابة الكلمات الدلالية
المواضيع الأخيرة
» Integration by Parts
الفيزياء 1  Icon_minitimeالأحد مارس 31, 2013 7:16 pm من طرف Admin

» Integration by parts -
الفيزياء 1  Icon_minitimeالأحد مارس 31, 2013 7:12 pm من طرف Admin

» Biot-Savart Law
الفيزياء 1  Icon_minitimeالأربعاء مارس 27, 2013 6:21 pm من طرف Admin

» Law of Biot-Savart
الفيزياء 1  Icon_minitimeالأربعاء مارس 27, 2013 6:18 pm من طرف Admin

»  the biot - savart law
الفيزياء 1  Icon_minitimeالأربعاء مارس 27, 2013 6:17 pm من طرف Admin

» Integration by substitution
الفيزياء 1  Icon_minitimeالسبت مارس 23, 2013 4:44 pm من طرف Admin

» Integration by Substitution : tutorial 1 : ExamSolutions
الفيزياء 1  Icon_minitimeالسبت مارس 23, 2013 4:43 pm من طرف Admin

» Integration using U-Substitution
الفيزياء 1  Icon_minitimeالسبت مارس 23, 2013 4:41 pm من طرف Admin

» Integration by Substitution
الفيزياء 1  Icon_minitimeالسبت مارس 23, 2013 4:40 pm من طرف Admin

يناير 2023
تسجل الدخول
  • تذكرني؟
  • التبادل الاعلاني

    انشاء منتدى مجاني


     الفيزياء 1

    اذهب الى الأسفل 
    كاتب الموضوعرسالة

    عدد المساهمات : 116
    نقاط : 25174
    السٌّمعَة : 1
    تاريخ التسجيل : 08/03/2013
    العمر : 28

    الفيزياء 1  Empty
    مُساهمةموضوع: الفيزياء 1    الفيزياء 1  Icon_minitimeالأربعاء مارس 20, 2013 5:31 pm

    Mirrors & Lenses

    23.1 Flat Mirrors (also called plane mirrors)

    An object viewed using a flat mirror appears to be located behind the mirror, because to the observer the diverging rays from the source appear to come from behind the mirror.

    The images reflected in flat mirrors have the following properties:

    The image distance q behind the mirror equals the object distance p from the mirror

    The image height h’ equals the object height h so that the lateral magnification

    The image has an apparent left-right reversal

    The image is virtual, not real!

    Real Image where the light ray actually come to a focus you can actually see the object projected on a screen placed at that location

    Virtual Image no light rays actually come directly from a virtual image, they just appear to the eye to do so. (When you see yourself in the mirror, are you actually located behind it as you appear?)

    To figure out what happens: draw rays, use law of reflection, use geometry

    Example: “I can see myself” how high must the mirror be for the man to see all of himself?

    23.2 Images Formed by Spherical Mirrors
    Spherical Mirror:

    Principle Axis: OCIV

    Center of Curvature C

    Radius of Curvature R

    Light rays converge to a real image at image point I

    Where is the image formed? What is its height? Draw two rays: one hitting V and the other passing through C:

    . We give this location a special name & designation : the focal point . With this designation we can re-write the concave spherical mirror equation as:

    Note, however, that truly spherical mirrors do not bring all rays to focus at the same location!

    Spherical Aberration this is the problem the Hubble Space Telescope had when first launched.

    23.3 Convex Mirrors (diverging mirrors) and Sign Conventions

    Is the entry for Image location q correct?

    Example: Problem #6
    A spherical Christmas tree ornament is 6.00 cm in diameter. What is the magnification of an object placed 10.0 cm away from the ornament?

    Example: Problem #11
    A 2.00-cm-high object is placed 3.00 cm in front of a concave mirror. If the image is 5.00 cm high and virtual, what is the focal length of the mirror?

    Example: Problem #16
    A convex spherical mirror with a radius of curvature of 10.0 cm produces a virtual image one-third the size of the real object. Where is the object?

    23.5 Atmospheric Refraction (read)

    23.6 Thin Lenses

    Note: a convex-concave lenses is sometimes referred to as a meniscus. It is the shape used for most eyeglasses.

    Using the same sign convention for thin lenses:

    Same as for mirrors!
    (This is the thin lens equation)

    If you are on a computer with Java installed go here and play with the mirrors & lenses. If it doesn’t fire up after a few seconds, go down to “8” and hit the start button. These little applets will give you a “feel” for what happens. Also try this converging lens and diverging lens applets. Simpler & prettier (but no mirrors).
    Example: Problem #32

    A convex lens of focal length 15.0 cm is used as a magnifying glass. At what distance from a postage stamp should you hold this lens to get a magnification of +2.00?

    Example: Problem #36

    An object’s distance from a converging lens is ten times the focal length. How far is the image from the focal point? Express the answer as a fraction of the focal length.

    Multiple Lenses

    This is more complicated, but straightforward if you follow these rules:

    Do the first lens as if the others weren’t there.

    Use the image formed by this lens as the object of the next lens

    Repeat this process for all the lenses in the system

    The total magnification is just the product of the individual magnifications of each lens.

    See Example 23.9 of the book

    Example: Problem #41

    Two converging lenses, each of focal length 15.0 cm, are placed 40.0 cm apart, and an object is placed 30.0 cm in front of the first. Where is the final image formed, and what is the magnification of the system?

    Microscope: Object very close to F0 makes a real inverted larger image. This image is then viewed & magnified further using the eyepiece.

    Telescope: Object near infinity forms a real inverted smaller image near the focal point. Eyepiece is used to magnify this image.

    The angular magnification (how much bigger it looks) is just . To get different magnifications, just change eyepieces!

    Most large telescopes use a concave mirror instead of a lens to form the image.

    الرجوع الى أعلى الصفحة اذهب الى الأسفل
    الفيزياء 1
    الرجوع الى أعلى الصفحة 
    صفحة 1 من اصل 1

    صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
    Group 4 :: المحاضرات الهامه-
    انتقل الى: